Exploring QCD phase diagram at vanishing baryon density on the lattice

Heng-Tong Ding
Brookhaven National Laboratory

RIKEN lunch seminar Apr. 4, 2013

sketched QCD phase diagram

QCD phase diagram at mu=0

- $N_f=2+1$ theory: at m=0 or ∞ has a first order phase transition
- Intermediate quark mass region an analytic cross over is expected
- At physical quark masses, a cross over is confirmed
- Critical lines of second order transition $N_f=2$: O(4) universality class
 - N_f=3: Ising universality class

The fundamental scale of QCD: chiral phase transition T_c?

$$\bigstar$$
 $m_s^{tri} < m_s^{phy}$ or $m_s^{tri} = m_s^{phy}$ or $m_s^{tri} > m_s^{phy}$?

The proximity of 2^{nd} order Z(2) line to the physical point ?

QCD phase transition in the chiral limit (m₁=0)

QCD phase transition at the physical point

feasibility to discover critical point experimentally

F. Karsch CPOD 'I I

- Ongoing Beam Energy Scan program at RHIC to discover the critical point (CP)
- Phiral phase transition line from universal scaling analysis on lattice QCD
- Only if the chiral phase transition line is close enough to the freeze out line, there is a hope that the CP can be discovered through heavy ion collision experiments

approaching chiral limit in Nf=3 QCD

• Ist order phase transition

distribution of observable X

$$P_{\rm f}=1$$
 $P(x) \propto \left(\exp\left(-\frac{(x-X_+)^2}{2c/V}\right) + \exp\left(-\frac{(x-X_-)^2}{2c/V}\right)\right)$

susceptibilities of observable X

$$\chi_X = V\left(\langle x^2 \rangle\right) - \langle x \rangle^2 = V(X_+ - X_-)^2 + \epsilon$$

 \bullet 2nd order phase transition belongs to Z(2) universality class

$$M = (\langle \Psi \Psi \rangle + r \square) \Big|_{T=T_{c,mc}} \sim (m-m_c)^{1/\delta}$$

$$\chi_q/T^2 \Big|_{T=T_{c,mc}} \sim (m-m_c)^{1/\delta-1}$$

the value of m_{π} investigated so far...

Dependence on the choice of action

- Naive action: $N_T = 4 \Rightarrow m_{\pi}^c \approx 290 \text{ MeV}$ F. Karsch et al., Nucl.Phys.Proc.Suppl. 129 (2004) 614
- Naive action: $N_T = 6 \Rightarrow m_{\pi}^c \approx 140 \text{ MeV}_{P. de Forcrand et al, PoS LATTICE2007 (2007) 178}$
- P4fat3 action: $N_{\tau} = 4 \Rightarrow m_{\pi}^{c} \approx 67 \; \text{MeV}$ F. Karsch et al., Nucl.Phys.Proc.Suppl. 129 (2004) 614
- * stout action: $N_T = 6 \Rightarrow m_{\pi}^c \lesssim 50 \text{ MeV}$ G. Endrodi et al., PoS LAT2007 (2007) 228

Highly Improved staggered quarks (HISQ) used

Lattice setup

★ Highly Improved staggered fermions/tree action used

 \bigstar 3 degenerate quarks, m_{π} down to 80 MeV

 \bigstar N_T=6 lattices

	lattice dim	quark mass	m_{π}	#T	statistics
	16 ³ ×6	ma=0.0075	230 MeV	17	~8000
Volume dep.	10 ³ ×6	ma=0.00375	I60 MeV	9	~12000
	12 ³ x6	ma=0.00375	I60 MeV	8	~12000
	16 ³ x6	ma=0.00375	I60 MeV	7	~12000
	24 ³ x6	ma=0.00375	I60 MeV	12	~8000
	24 ³ ×6	ma=0.0025	I30 MeV	5	~8000
•	$24^3 \times 6$	ma=0.001875	II0 MeV	7	~8000
	24 ³ ×6	ma=0.00125	90 MeV	7	~8000
Volume	24 ³ ×6	ma=0.0009375	80 MeV	8	~6000
dep.	16 ³ x6	ma=0.0009375	80 MeV	6	~7000

volume dependence with m_{π} =160 MeV

- volume dependence is smaller at higher temperatures
- peak locations in chiral susceptibilities shift to lower temperatures at smaller volume

chiral condensates & susceptibilities

- chiral condensate decreases with temperature
- chiral susceptibility increases at smaller masses

chiral condensates & susceptibilities

- finite volume effects bring chiral condensates down
- No evidence of volume scaling observed from chiral susceptibility

time history of chiral condensates

• No double peak structure is seen

time history of chiral condensates

- No double peak structure is seen
- With 230 \geq m $_{\pi}$ \geq 80 MeV, no direct signal of first order phase transition is found

Binder cumulant of chiral condensate

$$B_{ar{\psi}\psi} \equiv rac{\langle (\deltaar{\psi}\psi)^4
angle}{\langle (\deltaar{\psi}\psi)^2
angle^2}$$

In the crossover region B=3

2nd order transition in the Ising universal class B=1.604

1st order transition B=1

chiral susceptibilities

 peak locations in chiral susceptibilities shift to lower temperature with decreasing quark mass

 χ_q/T^2 $T=T_{c,mc}\sim (m-m_c)^{1/\delta-1}$

• indication of a non-zero critical mass m_c if peak heights in chiral susceptibilities grow faster than $(am)^{1/\delta-1}$:

estimate of the critical mass

Fitting ansatz: $T^2/\chi_q = c (m-m_c)^{1-1/\delta}$

Navigation: $am=0.0009375 \Leftrightarrow m_{\pi}=80 \text{ MeV}$

 $am_c \approx 0.00037 \qquad m_{\pi}^c \approx 45 \; MeV$

estimate of the critical mass

Fitting ansatz: $T^2/\chi_q = c (m-m_c)^{1-1/\delta}$

Navigation: $am=0.0009375 \Leftrightarrow m_{\pi}=80 \text{ MeV}$

 $am_c \approx 0.00037$ $m_{\pi}^c \approx 45 \; MeV$

 $m_{\pi}^{c} \lesssim 45 \text{ MeV}$

the first order phase transition region revisited

coordinates of the physical point: $(\overline{m}_s/27, \overline{m}_s)$

3 degenerate quarks: coordinates of $m_{max}^c \approx (\overline{m}_s/270, \overline{m}_s/270)$

the first order phase transition region revisited

coordinates of the physical point: $(\overline{m}_s/27, \overline{m}_s)$

3 degenerate quarks: coordinates of $m_{max}^c \approx (\overline{m}_s/270, \overline{m}_s/270)$ non-degenerate quarks: coordinates of $m_{max}^c \approx (\overline{m}_s/225, \overline{m}_s/8)$ Endrodi et al.,'07

the first order phase transition region revisited

coordinates of the physical point: $(\overline{m}_s/27, \overline{m}_s)$

3 degenerate quarks: coordinates of $m_{max}^c \approx (\overline{m}_s/270, \overline{m}_s/270)$ non-degenerate quarks: coordinates of $m_{max}^c \approx (\overline{m}_s/225, \overline{m}_s/8)$ Endrodi et al.,'07

Consequences: to have a critical point at small μ , the critical surface has to bend towards to the physical point with a very large curvature

Summary I

• We study the direct signal for first order phase transition with m_π from 230 MeV down to 80 MeV for $N_f{=}3$ on $N_\tau{=}6$ lattices using the HISQ action

No evidence for a first order phase transition is found with

230 MeV \geq m $_{\pi} \geq$ 80 MeV

• From scaling analysis on chiral susceptibility, current estimation gives $m_{TI}^c \lesssim 45$ MeV, which indicates that the first order chiral phase transition region is far away from the physical point

Nf=2+1 QCD

study universal properties of chiral phase transition and its influence to the physical world

- fix the physical strange quark mass
- decrease the light quark mass to the chiral limit

O(N) spin models and Nf=2 QCD

QCD at low energies can be described effectively by O(N) symmetric spin models

- $SU(2)_L \times SU(2)_R$ is isomorphic to O(4)
- O(4) fields: $\sigma = \bar{q}q$, $\pi = \bar{q}\gamma_5 t^i q$
- external field H corresponds to quark mass m
- order parameter "magnetization" $\Sigma = <\sigma>$

This description is valid both below and in the vicinity of the chiral phase transition region

chiral phase transition and universal scaling

Behavior of the free energy close to critical lines

$$f(m,T)=h^{1+1/\delta} f_s(z) + f_{reg}(m,T),$$
 $z=t/h^{1/\beta\delta}$

h: external field, t: reduced scaling variable, β , δ : universal critical exponents

 $f_s(z)$: universal scaling function, O(N) etc.

Magnetic Equation of State (MEoS):

chiral phase transition and universal scaling

Behavior of the free energy close to critical lines

$$f(m,T)=h^{1+1/\delta} f_s(z) + f_{reg}(m,T),$$
 $z=t/h^{1/\beta\delta}$

h: external field, t: reduced scaling variable, β , δ : universal critical exponents

 $f_s(z)$: universal scaling function, O(N) etc.

Magnetic Equation of State (MEoS):

$$M = -\partial f_s(t,h)/\partial h = h^{1/\delta} f_G(z)$$

 $h = \frac{I}{h_0} \frac{m_l}{m_s}$

$$t = \frac{I}{t_0} \frac{T - T_c}{T_c}$$

$$f_{\chi}(z)=h_0^{1/\delta}(m_l/m_s)^{1-1/\delta}\partial M/\partial h$$

BNL-Bielefeld PRD '09

scaling violations at m_I/m_s<1/10

no fitting

universality at small mu

the curvature of chiral phase transition line: κ_q

$$\frac{T_c(\mu_q)}{T_c} = 1 - \kappa_q \left(\frac{\mu_q}{T}\right)^2 + \mathcal{O}\left(\left(\frac{\mu_q}{T}\right)^4\right)$$

Taylor expansion of chiral condensate about $\mu=0$

$$\frac{\langle\bar{\psi}\psi\rangle_l}{T^3} = \left(\frac{\langle\bar{\psi}\psi\rangle_l}{T^3}\right)_{\mu_q=0} + \frac{\chi_{m,q}}{2T}\left(\frac{\mu_q}{T}\right)^2 + \mathcal{O}((\mu_q/T)^4)$$

Universal scaling

$$\frac{\chi_{m,q}}{T} = \frac{\partial^2 \langle \bar{\psi}\psi \rangle_l / T^3}{\partial (\mu_q / T)^2} = \frac{2\kappa_q T}{t_0 m_s} h^{-(1-\beta)/\beta \delta} f_G'(z)$$

the chiral critical line O. Kaczmarek et al., PRD 83 (2011) 014504

$$\frac{T_c(\mu_q)}{T_c} = 1 - 0.059(2)(4) \left(\frac{\mu_q}{T}\right)^2 + \mathcal{O}\left(\left(\frac{\mu_q}{T}\right)^4\right)$$

the freeze out curve J. Cleymans et al., PRC 73 (2006) 034905

$$\frac{T_{freeze}(\mu_q)}{T_{freeze}(0)} = 1 - 0.21(2) \left(\frac{\mu_q}{T}\right)^2 + \mathcal{O}\left(\left(\frac{\mu_q}{T}\right)^4\right)$$

BNL-Bielefeld, O. Kaczmarek et al., PRD 83 (2011) 014504

universality at small mu

the curvature of chiral phase transition line: κ_q

$$\frac{T_c(\mu_q)}{T_c} = 1 - \kappa_q \left(\frac{\mu_q}{T}\right)^2 + \mathcal{O}\left(\left(\frac{\mu_q}{T}\right)^4\right)$$

Taylor expansion of chiral condensate about $\mu=0$

$$\frac{\langle\bar{\psi}\psi\rangle_l}{T^3} = \left(\frac{\langle\bar{\psi}\psi\rangle_l}{T^3}\right)_{\mu_q=0} + \frac{\chi_{m,q}}{2T}\left(\frac{\mu_q}{T}\right)^2 + \mathcal{O}((\mu_q/T)^4)$$

Universal scaling

$$\frac{\chi_{m,q}}{T} = \frac{\partial^2 \langle \bar{\psi}\psi \rangle_l / T^3}{\partial (\mu_q / T)^2} = \frac{2\kappa_q T}{t_0 m_s} h^{-(1-\beta)/\beta \delta} f_G'(z)$$

the chiral critical line O. Kaczmarek et al., PRD 83 (2011) 014504

$$\frac{T_c(\mu_q)}{T_c} = 1 - 0.059(2)(4) \left(\frac{\mu_q}{T}\right)^2 + \mathcal{O}\left(\left(\frac{\mu_q}{T}\right)^4\right)$$

the freeze out curve J. Cleymans et al., PRC 73 (2006) 034905

$$\frac{T_{freeze}(\mu_q)}{T_{freeze}(0)} = 1 - \frac{0.21(2)}{T} \left(\frac{\mu_q}{T}\right)^2 + \mathcal{O}\left(\left(\frac{\mu_q}{T}\right)^4\right)$$

BNL-Bielefeld, O. Kaczmarek et al., PRD 83 (2011) 014504

data sets for $N_f=2+1$ on $N_\tau=6$ lattices

★ Highly Improved staggered fermions/tree action used

 \bigstar decrease ml with ms fixed to its physical value, m π down to 80 MeV

 \bigstar N_T=6 lattices

	lattice dim	ms/ml	mπ	#T	# traj.
	24 ³ ×6	20	200 MeV	11	~9000
Volume dep.	12 ³ x6	27	I40 MeV	[]	~9000
	16 ³ x6	27	I40 MeV	11	~9000
	20 ³ ×6	27	I40 MeV		~9000
	24 ³ ×6	27	I40 MeV	11	~9000
	32 ³ x6	27	I40 MeV	11	~9000
	32 ³ x6	40	II0 MeV		~8000
	40 ³ x6	60	90 MeV	7	~6000
Volume dep.	32 ³ x6	80	80 MeV	4	~3000
	48 ³ x6	80	80 MeV	5	~2000

volume dependence at physical pion mass

- volume effects are small in 3 largest volume
- m_{π} L > 4 is ensured in the following datasets
- volume scaling analysis to understand volume effects

chiral condensates & susceptibilities

• similar structure as that in Nf=3 case

volume dependence at mpi=80 MeV

No first order phase transition at mpi=80 MeV

quark mass dependence of chiral condensates

$$\left\langle \bar{\psi}\psi\right\rangle_{q}(T) = \left\langle \bar{\psi}\psi\right\rangle_{0}(T) + c_{2}(T)m_{q} + \frac{c_{\mathcal{U}\mathcal{V}}}{a^{2}}m_{q} + \mathcal{O}\left(m_{q}^{3}\right) + \delta_{ql} \begin{cases} c_{1}(T)m_{q}^{1/2} & T < T_{\text{c}} \\ c_{1}(T)m_{q}^{1/\delta} & T = T_{\text{c}} \\ 0 & T > T_{\text{c}} \end{cases}$$

fit ansatz:

$$a + b \left(\frac{m_l}{m_s}\right)^{1/2} + c \frac{m_l}{m_s}$$

rescaled chiral susceptibilities

O(2) scaling analysis

parameters t0, h0, Tc obtained from the scaling fits of the chiral condensates for our lightest two pion masses: 90 and 80 MeV

system with mpi=160, 140, 110 MeV does not lie in the scaling window

O(2) scaling analysis

parameters t0, h0, Tc obtained from the scaling fits of the chiral condensates for our lightest two pion masses: 90 and 80 MeV

system with mpi=160, 140, 110 MeV does not lie in the scaling window

Summary II

- We study the chiral observables on Nt=6 lattices with mpi=160,140,110,90 and 80 MeV
- •No direct signal of a first order phase transition in current pion mass window is found
- The system with mpi=160, 140, 110 MeV seems not lie in the scaling regime
- •A detailed study on the scaling violation is needed to account the influence of chiral phase transition to the physical world
 - •To study the universal properties of chiral phase transition simulations with pion masses lower than 80 MeV are crucially needed